A repressor complex, AP4 transcription factor and geminin, negatively regulates expression of target genes in nonneuronal cells.
نویسندگان
چکیده
The transcription of neuron-specific genes must be repressed in nonneuronal cells. REST/NRSF is a transcription factor that restricts the expression of many neuronal genes through interaction with the neuron-restrictive silencer element at the promoter level. PAHX-AP1 is a neuronal gene that is developmentally up-regulated in the adult mouse brain but that has no functional NRSE motif in its 5' upstream sequence. Here, we report that the transcription factor AP4 and the corepressor geminin form a functional complex in which SMRT and histone deacetylase 3 are recruited. The functional complex represses PAHX-AP1 expression in nonneuronal cells and participates in regulating the developmental expression of PAHX-AP1 in the brain. This complex also serves as a transcriptional repressor of DYRK1A, a candidate gene for Down's syndrome. Furthermore, compared with that in normal fetal brain, the expression of AP4 and geminin is reduced in Down's syndrome fetal brain at 20 weeks of gestation age, at which time premature overexpression of dual-specificity tyrosine-phosphorylated and regulated kinase 1A (DYRK1A) is observed. Our findings indicate that AP4 and geminin act as a previously undescribed repressor complex distinct from REST/NRSF to negatively regulate the expression of target genes in nonneuronal cells and suggest that the AP4-geminin complex may contribute to suppressing the precocious expression of target genes in fetal brain.
منابع مشابه
A Study to Assess the Role of Gluten Encoded Genes and Their Regulatory Elements in Bread Making Quality of Wheat
Introduction: Bread making quality is affected by gluten genes and balance between their expressions. Hence, it is necessary for a comprehensive research to study and compare all gluten genes and their regulating elements simultaneously. Objectives: The aim of this study was to evaluate the molecular mechanism of bread quality in the level of coding genes and regulating elements via compa...
متن کاملReciprocal actions of REST and a microRNA promote neuronal identity.
MicroRNAs (miRNAs) are implicated in both tissue differentiation and maintenance of tissue identity. In most cases, however, the mechanisms underlying their regulation are not known. One brain-specific miRNA, miR-124a, decreases the levels of hundreds of nonneuronal transcripts, such that its introduction into HeLa cells promotes a neuronal-like mRNA profile. The transcriptional repressor, RE1 ...
متن کاملEvaluation of the Effects of Nicotine on Mammalian Target of Rapamycin Complex 2 and Signal Transducer and Activator of Transcription 3 Genes Expression in a Mouse Model of Allergic Asthma: An experimental study
Background & Aims: Allergic diseases have increased in the last decade worldwide and researchers have been trying to introduce new strategies and drugs to treat these types of diseases. Nicotine shows anti-inflammatory properties and the studies have revealed that it can reduce the inflammation and the allergic responses. The mammalian target of rapamycin (mTOR) is a multifunctional protein kin...
متن کاملEffect of Oxidized Low Density Lipoprotein on the Expression of Runx2 and SPARC Genes in Vascular Smooth Muscle Cells
Background: Vascular calcification is an important stage in atherosclerosis. During this stage, vascular smooth muscle cells (VSMC) synthesize many osteogenic factors such as osteonectin (encoded by SPARC). Oxidative stress plays a critical role in atherosclerosis progression, and its accumulation in the vascular wall stimulates the development of atherosclerosis and vascular calcification. The...
متن کاملP-231: Androgen Receptor Gene Expression in Azoospermia Men
Background: Androgens are critical steroid hormones in progression of spermatogenesis process and determine the male phenotype that their actions are mediated by the androgen receptor (AR), a member of the nuclear receptor superfamily. In the Androgen receptor, transactivation domain encoded by exon 1, DNA binding domain encoded by exons 2 and 3, hinge region encoded by part of exon 4, and C-te...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 35 شماره
صفحات -
تاریخ انتشار 2006